LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 07-11-2024

M.Sc. DEGREE EXAMINATION – STATISTICS

THIRD SEMESTER - **NOVEMBER 2024**

Dept. No.

Max.: 100 Marks

PST3MC01 MULTIVARIATE ANALYSIS

T	ime: 01:00 pm-04:00 pm				
SECTION A – K1 (CO1)					
	Answer ALL the questions $(5 \times 1 = 5)$				
1	Fill in the blanks				
a)	Function associates the Value for every outcome of a random experiment.				
b)	The measures the strength and direction of the relationship between two variables while				
	controlling for the effect of one or more additional variables.				
c)	A key assumption of MANOVA is that the dependent variables should be distributed				
	within each group.				
d)	Canonical correlation is a statistical technique used to explore the relationship between two sets of				
	variables.				
e)	The method is a common approach in cluster analysis that groups data points based on				
	the distance between them, often using Euclidean distance as a metric.				
SECTION A – K2 (CO1)					
	Answer ALL the questions $(5 \times 1 = 5)$				
2	Define the following				
a)	Probability distribution of a discrete random variable.				
b)	Generalized T ² statistic				
c)	State any one of the Properties of Wishart distribution.				
d)	Factor rotation				
e)	What is the similarity coefficient when 0-0 matches totally ignored and double weight for unmatched				
	pairs in denominator?				
SECTION B – K3 (CO2)					
	Answer any THREE of the following $(3 \times 10 = 30)$				
3	Compute the correlation matrix from the following covariance matrix:				
	[4 1 2]				
	$\Sigma = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 5 \end{bmatrix}$				
4	Explain Hotelling T^2 and Mahalanobi's D^2 statistics.				
5	Discuss canonical correlation coefficient.				

- 6 What are the roles of Kaiser Meyer Olkin test and Bartlett's test of Sphericity in Factor analysis.
- 7 Explain any four distance measures for numeric data.

SECTION C – K4 (CO3)

Answer any TWO of the following

 $(2 \times 12.5 = 25)$

- 8 Explain expected cost of misclassification for classifying two populations.
- 9 Discuss the Partial correlation coefficient and Multiple correlation coefficient.
- 10 State the properties of Wishart Distribution, Repeated Measures Design and MANOVA.
- 11 Determine the optimum number of clusters (k) using Elbow method for the following data:

 X_1 : 1 2 4 5, X_2 : 1 1 3 4.

SECTION D – K5 (CO4)

Answer any ONE of the following

 $(1 \times 15 = 15)$

Find the mean vector covariance matrix and correlation matrix for two random variables x_1 and x_2 , when their joint probability function is represented in the following table:

x1 \x2	0	1
-1	0.24	0.06
0	0.16	0.14
1	0.4	0

13 The maximum likelihood estimators μ and Σ are $\hat{\mu} = \overline{X}$ and $\Sigma = \frac{1}{n}s$,

where
$$s = \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$$

SECTION E - K6 (CO5)

Answer any ONE of the following

 $(1 \times 20 = 20)$

Determine the principal component and the proportion of variance explained by each component based on variance covariance matrix given below:

$$\Sigma = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

15 Construct the Dendogram using Single Linkage Method with Euclidean distance for the following data:

National track Record for Women					
Country	100m	200m	400m		
Argentina	11.57	22.94	52.5		
China	10.79	22.01	49.81		
India	11.56	23.86	55.08		
USA	10.49	21.34	48.83		
Russia	10.77	21.8	49.11		